ELSEVIER

Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

Hemin as a generic and potent protein misfolding inhibitor

Yanqin Liu^a, John A. Carver^b, Lam H. Ho^a, Abigail K. Elias^a, Ian F. Musgrave^c, Tara L. Pukala^{a,*}

- ^a School of Chemistry and Physics, The University of Adelaide, Adelaide, SA 5005, Australia
- ^b Discipline of Pharmacology, The University of Adelaide, Adelaide, SA 5005, Australia
- ^c Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia

ARTICLE INFO

Article history: Received 9 October 2014 Available online 18 October 2014

Keywords: Protein misfolding Hemin Amyloid fibrils Cell toxicity ys-Crystallin

ABSTRACT

Protein misfolding causes serious biological malfunction, resulting in diseases including Alzheimer's disease, Parkinson's disease and cataract. Molecules which inhibit protein misfolding are a promising avenue to explore as therapeutics for the treatment of these diseases. In the present study, thioflavin T fluorescence and transmission electron microscopy experiments demonstrated that hemin prevents amyloid fibril formation of kappa-casein, amyloid beta peptide and α -synuclein by blocking β -sheet structure assembly which is essential in fibril aggregation. Further, inhibition of fibril formation by hemin significantly reduces the cytotoxicity caused by fibrillar amyloid beta peptide *in vitro*. Interestingly, hemin degrades partially formed amyloid fibrils and prevents further aggregation to mature fibrils. Light scattering assay results revealed that hemin also prevents protein amorphous aggregation of alcohol dehydrogenase, catalase and γ s-crystallin. In summary, hemin is a potent agent which generically stabilises proteins against aggregation, and has potential as a key molecule for the development of therapeutics for protein misfolding diseases.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Most proteins typically fold into unique three-dimensional structures in order to become biologically active [1,2]. However under stress conditions (elevated temperature, extreme pH, oxidisation etc.), native proteins can misfold via partially structured intermediates to either disordered amorphous aggregates or ordered amyloid fibrils [3]. Amorphous aggregation occurs by a relatively fast and random process [4–6], whereas amyloid fibril formation occurs in a more ordered manner at a slower rate [7]. Protein misfolding which results in aggregate formation can lead to serious biological consequences. An example of amorphous aggregation is cataract, caused by misfolded crystallin proteins in the eye lens. Age-dependent post-translational modification, such as deamination, oxidation, glycation, and truncation [8–11] of lens crystallin proteins lead to their amorphous aggregation and subsequent precipitation [12] which therefore impair vision. Amyloid fibril formation is

Abbreviations: Aβ42, amyloid-beta peptide 1-42; AD, Alzheimer's disease; ADH, alcohol dehydrogenase; αS, alpha-synuclein; CD, circular dichroism; DTT, 1,4-dithiothreitol; RCM-κ-CN, reduced and carboxymethylated kappa-casein; MTT, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide; PD, Parkinson's disease; TEM, transmission electron microscopy; ThT, thioflavin T.

* Corresponding author. Fax: +61 6 8313 4380. E-mail address: tara.pukala@adelaide.edu.au (T.L. Pukala). associated with more than 20 diseases, including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease [13–18]. In AD, the most prevalent age-related neurodegenerative disorder, two proteins aggregate to form amyloid fibrils, namely the amyloid-beta peptide (A β) and hyperphosphorylated tau protein [14,19]. In PD, α -synuclein (α S) is found to be the main protein in amyloid fibrils present in Lewy's body deposits [20–22].

To date, considerable effort has been dedicated to discovering efficacious molecules to combat protein misfolding in order to prevent these diseases or delay their onset. However, there is still no effective, widely used therapeutic to treat protein misfolding diseases. Hemin, the oxidised form of heme, is a crucial component of many physiological processes including electron transport and redox chemistry, and is essential to the function of a number of proteins, such as haemoglobin, cytochrome, catalase and peroxidase [23,24]. A previous report has shown that hemin prevents Aß aggregation and reduces cytotoxicity of aggregated Aß on neuroblastoma cells [25]. However the selectivity and mechanism of hemin as a protein misfolding inhibitor are still unclear. The aims of this research are (1) to evaluate the general efficacy and mechanism of hemin as a protein misfolding inhibitor; (2) to explore the properties of hemin in breaking down preformed, or partially formed fibrils of Aβ42; (3) to investigate the ability of hemin to rescue SH-SY5Y cells from toxicity associated with amyloid fibrils; and (4) to examine the ability of hemin to prevent amorphous aggregation *in vitro*. Therefore this work will provide significant insight into the possibility of developing hemin as an effective therapeutic for preventing or treating protein misfolding diseases.

2. Materials and methods

2.1. Materials

κ-casein (κ-CN) (Sigma, USA) was reduced and carboxymethylated as previously described [26,27]. The A β peptide 1-42 (A β 42) was purchased from Anaspec (USA), dissolved in 60 μL of 1.0% NH₄₋ OH and brought to a final concentration of 250 µM using MilliQ water. This stock solution was separated into aliquots and stored at $-80\,^{\circ}\text{C}$ until use. $\alpha\text{-Synuclein}$ mutant A53T (A53T α S) was expressed and purified as previously described [28]. Hemin, alcohol dehydrogenase (ADH) and catalase were from Sigma. All protein solutions were prepared in phosphate buffer (10 mM, pH 7.4) and passed through a 0.22 µm syringe filter (Pall Corporation, USA) to remove any aggregates prior to experiment. Thioflavin T (ThT), (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT) and 1,4-dithiothreitol (DTT) were obtained from Sigma-Aldrich (Australia). Uranyl acetate was obtained from Agar Scientific (UK). Strong carbon coated 400-mesh nickel grids used for all transmission electron microscopy (TEM) imaging were purchased from ProSciTech (Australia). RPMI1640 powder, foetal bovine serum, horse serum and L-glutamine were purchased from Thermo Electron Corporation (Australia). All other reagents were of analytical grade.

2.2. Thioflavin T assay

ThT fluorescence was measured on a Fluostar Optima plate reader (BMG Labtechnologies, Australia) with a 440/490 nm excitation/emission filter set. The ThT assay was prepared in a 96-well micro-plate in duplicate and incubated in the presence of 10 μM ThT with shaking for A53T αS and without shaking for reduced and carboxymethylated κ -CN (RCM- κ -CN) and A β 42. 10 μM A53T αS , 25 μM A β 42 and 25 μM RCM- κ -CN were prepared in 100 mM phosphate buffer pH 7.4 in the absence and presence of 1:1 M ratio of hemin.

2.3. Transmission electron microscopy

Samples for TEM were prepared by applying 5 μ L of protein solution directly from the ThT assays to 400-mesh carbon coated nickel grids, washing three times with 10 μ L filtered MilliQ water, then negatively staining using 5 μ L 2% (w/v) uranyl acetate. The samples were viewed using a Philips CM100 transmission electron microscope (Philips, The Netherlands).

2.4. Circular dichroism spectroscopy

All far-UV-circular dichroism (CD) spectra were acquired on a Jasco-715 spectropolarimeter at 25 °C, using a cuvette of 1 mm path length at a scan speed of 10 nm min $^{-1}$ and a time constant of 0.125 s. Each sample (final concentration 10 μM) was prepared in phosphate buffer (10 mM, pH 7.4). The spectra were recorded in millidegree units over a wavelength range of 190–250 nm then converted and plotted as a function of ellipticity.

2.5. Methyl tetrazolium bromide assay

SH-SY5Y cells were cultured in RPMI (Roswell Park Memorial Institute) 1640 medium containing 10% v/v horse serum, 5% v/v

foetal bovine serum, $10~U~mL^{-1}$ of penicillin and $10~\mu g~mL^{-1}$ of streptomycin and maintained at $37~^{\circ}C$ in a humidified incubator with $5\%~CO_2$. Cells were plated at a density of 2×10^4 cells per well in 96-well plates in $100~\mu L$ full-serum fresh medium. After 24~h, the cells were treated with A β 42 from the ThT fluorescence assay which was incubated in the absence and presence of hemin, to give a final A β 42 concentration of $1~\mu M$. Each treatment had six replicates. After a further 48~h of incubation, the treated cells were tested for viability by the MTT assay [29] using a BMG Polarstar microplate reader (BMG Labtechnologies, Germany). The results of the MTT assay were statistically analysed using one-way analysis of variance (ANOVA) followed by a Dunnett's comparison test (GraphPad PRISM V6). Differences were accepted as statistically significant at p < 0.05.

2.6. Light scattering assay

Light scattering assays were monitored at 360 nm in a Fluostar Optima plate reader (BMG Labtechnologies, Australia) at 40 °C. Samples for light scattering assays were prepared in a 96 well clear microplate in duplicate, with each well containing 200 μL protein solution either in the absence or presence of a 1:2 M ratio of hemin

3. Results and discussion

3.1. Hemin prevents amyloid fibril formation by RCM- κ -CN, A β 42 and A53T α S

Although amyloid fibril formation is often linked to the onset or progression of a variety of diseases, many non-disease-related proteins can also assemble into amyloid fibrils under appropriate conditions. RCM- κ -CN readily forms amyloid fibrils under physiological conditions in vitro [30], and has proven to be a convenient fibril-forming protein to screen for anti-amyloid compounds due to its robustness and high reproducibility [30]. In the present work. the generic anti-fibril activity of hemin was initially tested on RCM- κ -CN using a ThT assay. ThT is a benzothiazole dye that exhibits enhanced fluorescence upon binding to β-sheet rich structures, and hence is commonly used to monitor amyloid fibril formation [31,32]. As shown in Fig. 1A1, the ThT fluorescence profile of RCM-κ-CN incubated in the absence of hemin increased in intensity and reached a plateau after approximately 20 h. When RCM-κ-CN was incubated in the presence of a 1:1 M ratio of hemin, the ThT fluorescence did not increase with time.

Next, we measured the ability of hemin to prevent the PD and AD related proteins, $A53T\alpha S$ and $A\beta 42$ respectively, forming fibrils. As shown in Fig. 1B1, the ThT profile of $A53T\alpha S$ incubated in the absence of hemin increased in fluorescence intensity and reached a plateau at 80 h. Similarly, in the absence of hemin, the ThT fluorescence intensity of incubated $A\beta 42$ reached the plateau phase after 6 h (Fig. 1C1. Incubation with hemin prevented ThT fluorescence and hence fibril formation for both disease related proteins.

The increased ThT fluorescence intensity in Fig. 1 indicates that amyloid fibrils are formed after incubation for the three proteins studied, which is consistent with TEM images where long mature fibrils are observed (Fig. 1A2, B2, and C2). The ability of hemin to prevent fibril formation is also confirmed by TEM images where small aggregates are instead observed, as shown in Fig. 1A3, B3, and C3.

From these experiments, hemin is shown to prevent a range of peptides/proteins from aggregating to fibrils, and in doing so, converts them into small amorphous aggregate states.

The potency of hemin to prevent RCM- κ -CN fibril formation was compared with that of EGCG, which is a widely accepted

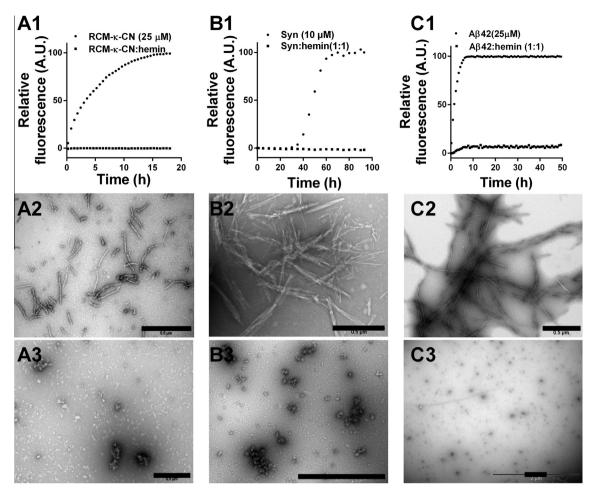
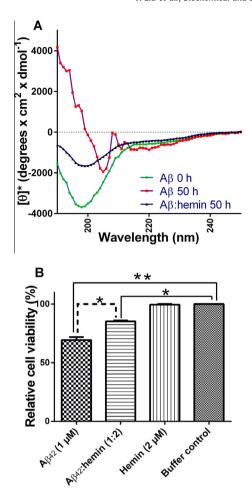


Fig. 1. Inhibitory effects of hemin on the amyloid fibrillar aggregation of RCM- κ -CN, A53T α S and A β 42. (A1) Time-dependent ThT fluorescence of 25 μ M RCM- κ -CN incubated in 100 mM phosphate buffer (pH 7.4) at 37 °C without shaking in the absence and presence of hemin, and TEM images of RCM- κ -CN fibrils formed after incubation in the (A2) absence and (A3) presence of hemin; (B1) time-dependent ThT fluorescence of 10 μ M A53T α S incubated in 100 mM phosphate buffer (pH 7.4) at 37 °C with shaking in the absence and presence of hemin, and TEM images of A53T α S fibrils formed after 100 h incubation in the (B2) absence and (B3) presence of hemin; (C1) time-dependent ThT fluorescence of 25 μ M A β 42 incubated in 100 mM phosphate buffer (pH 7.4) at 37 °C without shaking in the absence and presence of hemin, and TEM images of A β 42 fibrils formed after incubation for 48 h in the (C2) absence and (C3) presence of hemin. Scale bar = 500 nm.

inhibitor of fibril formation by the ThT assay. The IC_{50} of hemin is $1.4\pm0.2~\mu\text{M}$ compared to $12.8\pm1.5~\mu\text{M}$ for EGCG, which indicates that hemin is a potent inhibitor of amyloid fibril formation.


3.2. Hemin prevents $A\beta 42 \beta$ -sheet structure formation

Cross-β-sheet structure conversion is closely linked with the process of amyloid fibril formation [33,34]. The cross- β structures have either parallel or anti-parallel orientations of stacked β-sheet monomers aligned perpendicular to the fibril axis [35]. The secondary structure of AB42 before and after fibril formation in the presence and absence of hemin was analysed using far-UV CD spectroscopy to probe for β-sheet secondary structure. As shown in Fig. 2A, before incubation, Aβ42 gives a strong negative ellipticity reading at 195 nm, indicating the presence of a largely unfolded, random structure. After 50 h of incubation at 37 °C, the Aβ42 solution produces a far UV-CD spectrum with a broad absorption minimum at 217 nm, arising from a stabilization of β-sheet structure. Due to the aggregation of Aβ42, less soluble peptide was left in the solution therefore leading to the reduction in intensity and decreased the signal to noise ratio in the observed profile (red line). The spectrum of incubated AB42 in the presence of hemin exhibits features with a minimum ellipticity at approximately 195 nm, the same as before incubation (Fig. 2A), implying that hemin maintains the random-coil conformation of A β 42 by blocking the formation of β -sheet rich intermediates.

Further experiments were conducted to investigate the interaction of hemin with A β 42 using soft ionisation electrospray mass spectrometry. Unfortunately, no detectable and stable complexes were observed when A β 42 was incubated with hemin (Supplementary Fig. 1), implying that any interaction between hemin and A β 42 is weak and transient in nature. This is consistent with the interaction of A β 42 and other amyloid fibril forming peptides and proteins with their inhibitors, e.g. α 5 with the molecular chaperone α 8-crystallin and α 5 with gallic acid [27,36].

3.3. Hemin reduces the cytotoxicity of aggregated $A\beta 42$

In our present work, the toxicity of incubated A β 42 was evaluated on SH-SY5Y cells, a cell line often used as an model of neuronal function and differentiation [37]. In particular, the ability of hemin to prevent the cytotoxicity associated with incubated A β 42 was examined using an MTT assay. 25 μ M A β 42 was preincubated overnight at 37 °C in the absence and presence of 50 μ M hemin before exposure to SH-SY5Y cells. After serial dilution, a final concentration of 1 μ M of incubated A β 42 was added to SH-SY5Y cells either in the presence or absence of 2 μ M hemin. The results showed that the viability of SH-SY5Y cells exposed to

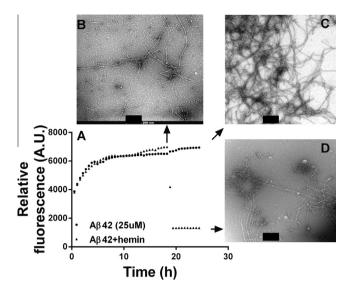


Fig. 2. (A) Secondary structure determination of Aβ42 by far-UV CD. Aβ42 (25 μM) in 10 mM phosphate buffer (pH 7.4) was incubated at 37 °C in either the absence of hemin (t = 0 h green line, t = 50 h red line) or presence of hemin (blue line) at a 1:2 M ratio for 50 h. (B) Cytotoxity induced by incubated Aβ42 as determined by the MTT assay. 25 μM Aβ42 was incubated in 100 mM phosphate buffer (pH 7.4) in the presence and absence of hemin for 50 h before being used to treat cells after dilution to the indicated concentration. Data are an average of three experiments and error bars indicate SEM expressed as percentages relative to control cells treated with buffer. * and ** refer to a significant difference (p < 0.05) and highly significant difference (p < 0.01) respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

incubated Aβ42 in the absence of hemin reduced to 69.3 ± 2.7%; a significant reduction compared to buffer control (p < 0.01). The viability of cells treated with incubated Aβ42 in the presence of hemin increased to 85.2 ± 0.8% (Fig. 2B), a significant improvement compared to fibrillar Aβ42 (p < 0.05). These results demonstrate that the inhibition of fibril formation of Aβ42 as a result of hemin blocking β-sheet structure transformation leads to a reduction of cell toxicity. It has previously been shown that hemin is toxic to PC12 cells and SH-SY5Y with a LD₅₀ of 25 μM [38]. However, in our present study, 2 μM of hemin did not show any toxic effects, as indicated in Fig. 2B, implying that hemin is safe at the tested concentration.

3.4. Hemin dissociates partially formed $A\beta 42$ fibrils

We investigated the ability of hemin to break down preformed amyloid fibrils. After 25 μ M A β 42 peptide was incubated for 20 h, hemin was added to the incubation solution at a molar ratio of 1:8 and further incubated for 30 h. As shown in Fig. 3A, ThT fluorescence intensity dropped immediately after addition of hemin

Fig. 3. Dissociation effects of hemin on preformed Aβ42 fibrils. (A) Time-dependent ThT fluorescence of 25 μM Aβ42 with hemin added after incubation for 20 h in 100 mM phosphate buffer (pH 7.4) at 37 °C; (B) TEM image of 25 μM Aβ42 after incubation for 20 h; (C) TEM image of 25 μM Aβ42 after incubation for 50 h; (D) TEM image of 25 μM Aβ42 after incubation for 50 h with hemin added at 20 h incubation at a 1:8 M ratio. Scale bar = 200 nm.

and remained low with further incubation. TEM images corresponding to A β 42 incubated for 20 h show a mixture of short and long filaments indicating that the fibrillization process is not fully complete at this time point (Fig. 3B). After a further 30 h incubation in the absence of hemin, only long filaments are observed (Fig. 3C) suggesting that all fibrils are matured. After a further 30 h incubation in the presence of hemin, the short, partially formed fibrils which were present in Fig. 3B disappeared completely, indicating that hemin can break down the partially formed amyloid fibrils into soluble protein, or convert them to amorphous aggregates which can be viewed in Fig. 3D.

Reversibility of fibril formation has been reported for several fibrillar proteins and peptides [39,40]. An *in vivo* study revealed that fibril formation of A β 42 is initiated by nucleation, followed by reversible deposition, then by irreversible fibrillization [39]. In the present study, it is clear that hemin can interact with and degrade the partially formed fibrils corresponding to the reversible aggregates. When the fibrils reach an irreversible state, hemin cannot dissociate them (Fig. 3D). This result suggests the possibility for use of hemin as a therapeutic agent to clear partially formed plaques before amyloid fibrils are fully formed.

3.5. Hemin inhibits amorphous aggregation

Different from amyloid deposits, which can be measured using ThT assays and can be distinguished using TEM technology, amorphous aggregate formation is normally monitored via turbidity measurements. In the present study, to evaluate the ability of hemin to prevent amorphous aggregation, we chose catalase, ADH and γ s-crystallin as target proteins whose aggregation can be induced thermally. As shown in Fig. 4A and B, the aggregation of catalase and ADH reached a maximum after incubation at 40 °C, yet in the presence of hemin, the turbidity associated with their precipitation was totally suppressed.

Hemin is also effective in inhibiting amorphous aggregation of γ s-crystallin. γ -crystallin is one of lens structural proteins with seven members, γ A to γ F and γ S. Like other crystallin proteins, γ s-crystallin must remain stable and soluble for the transparency of the eye lens. Aggregation of this protein leads to cataract

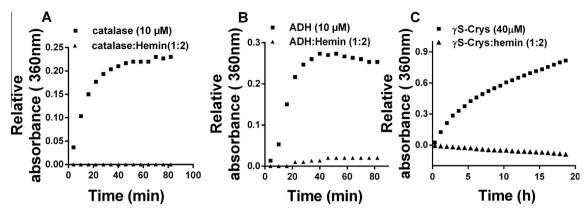


Fig. 4. Effects of hemin on amorphous aggregation as measured by light scattering. Solution turbidity following incubation was monitored at 360 nm. 10 μM catalase (A) or ADH (B) or 40 μM γs-crystallin (C) in 100 mM phosphate buffer, pH 7.4 was incubated at 40 °C in the absence () or presence of hemin () in duplicate.

clinically [41]. *In vitro* aggregation of γ s-crystallin was thermally induced in the present study. Aggregation of γ s-crystallin was prevented in the presence of hemin (Fig. 4C), implying that hemin can be investigated further for preventing or treating cataract.

4. Conclusions

In summary, we have demonstrated that hemin can prevent both amorphous aggregation and amyloid fibril formation for a variety of proteins, suggesting that hemin is a generic protein misfolding inhibitor. The toxicity of incubated A β 42 to SH-SY5Y cells can be attenuated by inhibiting fibril formation utilising hemin, which highlights the importance of hemin in inhibiting the cell toxicity associated with fibril formation in protein misfolding diseases. Moreover, hemin breaks down partially formed amyloid fibrils of A β 42, which implies that hemin can be used to prevent the progress of misfolding disease. Consequently, although the anti-aggregation and fibril degrading mechanisms of hemin are not known at a molecular level, hemin could be a key molecule for the development of therapeutics for protein misfolding diseases.

Acknowledgments

The authors thank the Australian Research Council for financial support of this investigation. Assistance provided by Ms Lyn Waterhouse for transmission electron microscopic analysis is gratefully acknowledged, γ s-crystallin was a gift from Dr. Damien Hall (The Australian National University).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.bbrc.2014.10.062.

References

- [1] C.M. Dobson, The structural basis of protein folding and its links with human disease, Philos, Trans. R. Soc. Lond. B 356 (2001) 133–145.
- [2] C. Anfinsen, Principles that govern the folding of protein chains, Science 181 (1973) 223–230.
- [3] J.A. Carver, A. Rekas, D.C. Thorn, M.R. Wilson, Small heat-shock proteins and clusterin: intra- and extracellular molecular chaperones with a common mechanism of action and function?, IUBMB Life 55 (12) (2003) 661–668
- [4] J.J. Yerbury, E.M. Stewart, A.R. Wyatt, M.R. Wilson, Quality control of protein folding in extracellular space, EMBO Rep. 6 (12) (2005) 1131–1136.
- [5] F.U. Hartl, H.M. Hayer, Molecular chaperones in the cytosol: from nascent chain to folded protein, Science 295 (2002) 1852–1858.
- [6] S.D. Stranks, H. Ecroyd, S. Van Sluyter, E.J. Waters, J.A. Carver, L. von Smekal, Model for amorphous aggregation process, Phys. Rev. E 80 (051907) (2009) 1–13.

- [7] H. Ecroyd, J.A. Carver, Unraveling the mysteries of protein folding and misfolding, IUBMB Life 60 (12) (2008) 769–774.
- [8] P.G. Hains, R.J. Truscott, Post-translational modifications in the nuclear region of young, aged, and cataract human lenses, J. Proteome Res. 6 (10) (2007) 3935–3943.
- [9] P.G. Hains, R.J. Truscott, Proteomic analysis of the oxidation of cysteine residues in human age-related nuclear cataract lenses, Biochim. Biophys. Acta 1784 (12) (2008) 1959–1964.
- [10] K.J. Lampi, Z. Ma, S.R. Hanson, M. Azuma, M. Shih, T.R. Shearer, D.L. Smith, J.B. Smith, L.L. David, Age-related changes in human lens crystallins identified by two-dimensional electrophoresis and mass spectrometry, Exp. Eye Res. 67 (1) (1998) 31–43.
- [11] Z. Zhang, D.L. Smith, J.B. Smith, Human beta-crystallins modified by backbone cleavage, deamidation and oxidation are prone to associate, Exp. Eye Res. 77 (3) (2003) 259–272.
- [12] G.B. Benedek, Cataract as a protein condensation disease the proctor lecture, Invest. Ophthalmol. Vis. Sci. 38 (10) (1997) 1911–1921.
- [13] D.M. Walsh, D.B. Teplow, Alzheimer's disease and the amyloid beta-protein, Prog. Mol. Biol Transl. Sci. 107 (2012) 101–124.
- [14] D.J. Selkoe, Folding proteins in fatal ways, Nature 426 (6968) (2003) 900–904.
- [15] D. Foguel, M.C. Suarez, A.D. Ferrao-Gonzales, T.C. Porto, L. Palmieri, C.M. Einsiedler, L.R. Andrade, H.A. Lashuel, P.T. Lansbury, J.W. Kelly, J.L. Silva, Dissociation of amyloid fibrils of alpha-synuclein and transthyretin by pressure reveals their reversible nature and the formation of water-excluded cavities. Proc. Natl. Acad. Sci. U.S.A. 100 (17) (2003) 9831–9836.
- [16] P.K. Nandi, Protein conformation and disease, Vet. Res. 27 (4–5) (1996) 373–382.
- [17] A. Lorenzo, B.A. Yankner, Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red, Proc. Natl. Acad. Sci. U.S.A. 91 (25) (1994) 12243–12247.
- [18] V.L. Villemagne, S. Burnham, P. Bourgeat, B. Brown, K.A. Ellis, O. Salvado, C. Szoeke, S.L. Macaulay, R. Martins, P. Maruff, D. Ames, C.C. Rowe, C.L. Masters, Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study, Lancet Neurol. 12 (4) (2013) 357–367
- [19] G.V. Johnson, C.D. Bailey, Tau, where are we now?, J Alzheimer's Dis. 4 (5) (2002) 375–398.
- [20] M.R. Cookson, The biochemistry of Parkinson's disease, Annu. Rev. Biochem. 74 (2005) 29–52.
- [21] P.E. Duffy, V.M. Tennyson, Phase and electron microscopic observations of Lewy bodies and melanin granules in the substantia nigra and locus coeruleus in Parkinson's disease, J. Neuropathol. Exp. Neurol. 24 (3) (1965) 398–414.
- [22] M.G. Spillantini, M.L. Schmidt, V.M. Lee, J.Q. Trojanowski, R. Jakes, M. Goedert, Alpha-synuclein in Lewy bodies, Nature 388 (6645) (1997) 839–840.
- [23] M. Faller, M. Matsunaga, S. Yin, J.A. Loo, F. Guo, Heme is involved in microRNA processing, Nat. Struct. Mol. Biol. 14 (1) (2007) 23–29.
- [24] S. Hou, M.F. Reynolds, F.T. Horrigan, S.H. Heinemann, T. Hoshi, Reversible binding of heme to proteins in cellular signal transduction, Acc. Chem. Res. 39 (12) (2006) 918–924.
- [25] D. Howlett, P. Cutler, S. Heales, P. Camilleri, Hemin and related porphyrins inhibit beta-amyloid aggregation, FEBS Lett. 417 (2) (1997) 249–251.
- [26] H.M. Farrell Jr., P.H. Cooke, E.D. Wickham, E.G. Piotrowski, P.D. Hoagland, Environmental influences on bovine kappa-casein: reduction and conversion to fibrillar (amyloid) structures, J. Protein Chem. 22 (3) (2003) 259–273.
- [27] Y. Schechter, A. Patchornik, Y. Burstein, Selective reduction of cystine 1–8 in alpha-lactalbumin, Biochemistry 12 (18) (1973) 3407–3413.
- [28] M.J. Volles, P.T. Lansbury, Relationships between the sequence of alphasynuclein and its membrane affinity, fibrillization propensity, and yeast toxicity, J. Mol. Biol. 366 (5) (2007) 1510–1522.
- [29] F.C. Dehle, H. Ecroyd, I.F. Musgrave, J.A. Carver, Alpha B-crystallin inhibits the cell toxicity associated with amyloid fibril formation by kappa-casein and the amyloid-beta peptide, Cell Stress Chaperones 15 (6) (2010) 1013–1026.
- [30] J.A. Carver, P.J. Duggan, H. Ecroyd, Y. Liu, A.G. Meyer, C.E. Tranberg, Carboxymethylated-kappa-casein: a convenient tool for the identification of

- polyphenolic inhibitors of amyloid fibril formation, Bioorg. Med. Chem. 18 (1) (2010) 222–228.
- [31] R. Khurana, C. Coleman, C. Ionescu-Zanetti, S.A. Carter, V. Krishna, R.K. Grover, R. Roy, S. Singh, Mechanism of thioflavin T binding to amyloid fibrils, J. Struct. Biol. 151 (3) (2005) 229–238.
- [32] M. Biancalana, S. Koide, Molecular mechanism of thioflavin-T binding to amyloid fibrils, Biochim. Biophys. Acta 1804 (7) (2010) 1405–1412.
- [33] R.S. Harrison, P.C. Sharpe, Y. Singh, D.P. Fairlie, Amyloid peptides and proteins in review, Rev. Physiol. Biochem. Pharmacol. 159 (2007) 1–77.
- [34] M. Sunde, L.C. Serpell, M. Bartlam, P.E. Fraser, M.B. Pepys, C.C.F. Blake, Common core structure of amyloid fibrils by synchrotron X-ray diffraction, J. Mol. Biol. 273 (1997) 729–739.
- [35] K.E. Marshall, L.C. Serpell, Insights into the structure of amyloid fibrils, Open Biol. J. 2 (2009) 185–192.
- [36] Y. Liu, J.A. Carver, A.N. Calabrese, T.L. Pukala, Gallic acid interacts with alphasynuclein to prevent the structural collapse necessary for its aggregation, Biochim. Biophys. Acta 1844 (9) (2014) 1481–1485.
- [37] L. Agholme, T. Lindstrom, K. Kagedal, J. Marcusson, M. Hallbeck, An in vitro model for neuroscience. differentiation of SH-SY5Y cells into cells with

- morphological and biochemical characteristics of mature neurons, J. Alzheimer's Dis. 20 (4) (2010) 1069–1082.
- [38] Y.S. Levy, J.Y. Streifler, H. Panet, E. Melamed, D. Offen, Hemin-induced apoptosis in PC12 and neuroblastoma cells: implications for local neuronal death associated with intracerebral hemorrhage, Neurotox. Res. 4 (7–8) (2002) 609-616.
- [39] I. Dolev, D.M. Michaelson, The nucleation growth and reversibility of amyloid-beta deposition *in vivo*, J. Alzheimer's Dis. 10 (2–3) (2006) 291–301.
- [40] A. Anoop, S. Ranganathan, B.D. Dhaked, N.N. Jha, S. Pratihar, S. Ghosh, S. Sahay, S. Kumar, S. Das, M. Kombrabail, K. Agarwal, R.S. Jacob, P. Singru, P. Bhaumik, R. Padinhateeri, A. Kumar, S.K. Maji, Elucidating the role of disulfide bond on amyloid formation and fibril reversibility of somatostatin-14: relevance to its storage and secretion, J. Biol. Chem. 289 (24) (2014) 16884–16903.
- [41] C. Liu, J. Pande, A. Lomakin, O. Ogun, G.B. Benedek, Aggregation in aqueous solutions of bovine lens gamma-crystallins: special role of gamma(s), Invest. Ophthalmol. Vis. Sci. 39 (9) (1998) 1609–1619.